Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Genet Med ; 24(8): 1653-1663, 2022 08.
Article in English | MEDLINE | ID: covidwho-1819495

ABSTRACT

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Subject(s)
COVID-19 , Aged , COVID-19/genetics , Collectins/genetics , Collectins/metabolism , Germ Cells , Humans , Lectins/genetics , SARS-CoV-2 , Exome Sequencing
2.
J Clin Med ; 10(18)2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1403845

ABSTRACT

We hypothesized that the spread of SARS-CoV-2 in urine during a severe COVID-19 infection may be the expression of the worsening disease evolution. Therefore, the aim of this study was to verify if the COVID-19 disease severity is related to the viral presence in urine samples. We evaluated the clinical evolution in acute COVID-19 patients admitted in the sub-intensive care and intensive care units between 28 of December 2020 and 15th of February 2021 and being positive for SARS-CoV-2 RNA in the respiratory tract, including repeated endotracheal aspirates (ETA), sputum, nasopharyngeal swabs (NPS) and urine. We found that those subjects with SARS-COV-2 in the urine at admittance (8 out of 60 eligible patients) had a more severe disease than those with negative SARS-CoV-2 in urine. Further, they showed an increase in fibrinogen and (C-reactive Protein) CRP serum levels, requiring mechanic ventilation. Of those with positive SARS-CoV-2 in the urine, 50% died. According to our preliminary results, it seems that the presence of SARS-CoV-2 in the urine characterizes patients with a more severe disease and is also related to a higher death rate.

3.
Genes (Basel) ; 12(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1264428

ABSTRACT

To identify host genetic determinants involved in humoral immunity and associated with the risk of developing severe COVID-19, we analyzed 500 SARS-CoV-2 positive subjects from Southern Italy. We examined the coding sequences of 10 common variable immunodeficiency-associated genes obtained by the whole-exome sequencing of 121 hospitalized patients. These 10 genes showed significant enrichment in predicted pathogenic point mutations in severe patients compared with the non-severe ones. Moreover, in the TNFRSF13C gene, the minor allele of the p.His159Tyr variant, which is known to increase NF-kB activation and B-cell production, was significantly more frequent in the 38 severe cases compared to both the 83 non-severe patients and the 375 asymptomatic subjects further genotyped. This finding identified a potential genetic risk factor of severe COVID-19 that not only may serve to unravel the mechanisms underlying the disease severity but, also, may contribute to build the rationale for individualized management based on B-cell therapy.


Subject(s)
B-Cell Activation Factor Receptor/genetics , COVID-19/etiology , COVID-19/genetics , Female , Gene Frequency , Humans , Italy , Male , Middle Aged , Polymorphism, Single Nucleotide , Retrospective Studies , Severity of Illness Index
4.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: covidwho-1244036

ABSTRACT

Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≤ 1 × 10-5) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Genetic Predisposition to Disease , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Alleles , Bronchi/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19/physiopathology , Chromosomes, Human/genetics , Cohort Studies , Computational Biology , Databases, Genetic , Genome-Wide Association Study , Genotype , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Polymorphism, Single Nucleotide , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL